QThread库是QT中提供的跨平台多线程实现方案,使用时需要继承QThread这个基类,并重写实现内部的Run方法,由于该库是基本库,默认依赖于QtCore.dll
这个基础模块,在使用时无需引入其他模块.
实现简单多线程: QThread库提供了跨平台的多线程管理方案,通常一个QThread对象管理一个线程,在使用是需要从QThread类继承并重写内部的Run方法,并在Run方法内部实现多线程代码.
#include <QCoreApplication> #include <iostream> #include <QThread>
class MyThread: public QThread {
protected: volatile bool m_to_stop;
protected: void run() { for(int x=0; !m_to_stop && (x <10); x++) { msleep(1000); std::cout << objectName().toStdString() << std::endl; } }
public: MyThread() { m_to_stop = false; }
void stop() { m_to_stop = true; }
void is_run() { std::cout << "Thread Running = " << isRunning() << std::endl; }
void is_finish() { std::cout << "Thread Finished = " << isFinished() << std::endl; }
};
int main(int argc, char *argv[]) { QCoreApplication a(argc, argv);
MyThread thread[10];
for(int x=0;x<10;x++) { thread[x].setObjectName(QString("thread => %1").arg(x)); }
for(int x=0;x<10;x++) { thread[x].start(); thread[x].is_run(); thread[x].isFinished(); }
for(int x=0;x<10;x++) { thread[x].wait(); thread[x].stop();
thread[x].is_run(); thread[x].is_finish(); }
return a.exec(); }
|
向线程中传递参数: 线程在执行前可以通过调用MyThread中的自定义函数,并在函数内实现参数赋值,实现线程传参操作.
#include <QCoreApplication> #include <iostream> #include <QThread>
class MyThread: public QThread { protected: int m_begin; int m_end; int m_result;
void run() { m_result = m_begin + m_end; }
public: MyThread() { m_begin = 0; m_end = 0; m_result = 0; }
void set_value(int x,int y) { m_begin = x; m_end = y; }
void get_object_name() { std::cout << "this thread name => " << objectName().toStdString() << std::endl; }
int result() { return m_result; } };
int main(int argc, char *argv[]) { QCoreApplication a(argc, argv);
MyThread thread[3];
for(int x=0; x<3; x++) { thread[x].set_value(1,2); thread[x].setObjectName(QString("thread -> %1").arg(x)); thread[x].start(); }
for(int x=0; x<3; x++) { thread[x].get_object_name(); thread[x].wait(); }
int result = thread[0].result() + thread[1].result() + thread[2].result(); std::cout << "sum => " << result << std::endl;
return a.exec(); }
|
QMutex 互斥同步线程锁: QMutex类是基于互斥量的线程同步锁,该锁lock()
锁定与unlock()
解锁必须配对使用,线程锁保证线程间的互斥,利用线程锁能够保证临界资源的安全性.
- 线程锁解决的问题: 多个线程同时操作同一个全局变量,为了防止资源的无序覆盖现象,从而需要增加锁,来实现多线程抢占资源时可以有序执行.
- 临界资源(Critical Resource): 每次只允许一个线程进行访问 (读/写)的资源.
- 线程间的互斥(竞争): 多个线程在同一时刻都需要访问临界资源.
- 一般性原则: 每一个临界资源都需要一个线程锁进行保护.
#include <QCoreApplication> #include <iostream> #include <QThread> #include <QMutex>
static QMutex g_mutex; static QString g_store;
class Producer : public QThread { protected: void run() { int count = 0;
while(true) { g_mutex.lock();
g_store.append(QString::number((count++) % 10)); std::cout << "Producer -> "<< g_store.toStdString() << std::endl;
g_mutex.unlock(); msleep(900); } } };
class Customer : public QThread { protected: void run() { while( true ) { g_mutex.lock(); if( g_store != "" ) { g_store.remove(0, 1); std::cout << "Curstomer -> "<< g_store.toStdString() << std::endl; }
g_mutex.unlock(); msleep(1000); } } };
int main(int argc, char *argv[]) { QCoreApplication a(argc, argv);
Producer p; Customer c;
p.setObjectName("producer"); c.setObjectName("curstomer");
p.start(); c.start();
return a.exec(); }
|
QMutexLocker是在QMutex基础上简化版的线程锁,QMutexLocker会保护加锁区域,并自动实现互斥量的锁定和解锁操作,可以将其理解为是智能版的QMutex锁,该锁只需要在上方代码中稍加修改即可.
#include <QMutex> #include <QMutexLocker>
static QMutex g_mutex; static QString g_store;
class Producer : public QThread { protected: void run() { int count = 0;
while(true) { QMutexLocker Locker(&g_mutex);
g_store.append(QString::number((count++) % 10)); std::cout << "Producer -> "<< g_store.toStdString() << std::endl;
msleep(900); } } };
|
互斥锁存在一个问题,每次只能有一个线程获得互斥量的权限,如果在程序中有多个线程来同时读取某个变量,那么使用互斥量必须排队,效率上会大打折扣,基于QReadWriteLock
读写模式进行代码段锁定,即可解决互斥锁存在的问题.
QReadWriteLock 读写同步线程锁: 该锁允许用户以同步读lockForRead()
或同步写lockForWrite()
两种方式实现保护资源,但只要有一个线程在以写的方式操作资源,其他线程也会等待写入操作结束后才可继续读资源.
#include <QCoreApplication> #include <iostream> #include <QThread> #include <QMutex> #include <QReadWriteLock>
static QReadWriteLock g_mutex; static QString g_store;
class Producer : public QThread { protected: void run() { int count = 0;
while(true) { g_mutex.lockForWrite();
g_store.append(QString::number((count++) % 10));
g_mutex.unlock();
msleep(900); } } };
class Customer : public QThread { protected: void run() { while( true ) { g_mutex.lockForRead(); if( g_store != "" ) { std::cout << "Curstomer -> "<< g_store.toStdString() << std::endl; }
g_mutex.unlock(); msleep(1000); } } };
int main(int argc, char *argv[]) { QCoreApplication a(argc, argv);
Producer p1,p2; Customer c1,c2;
p1.setObjectName("producer 1"); p2.setObjectName("producer 2");
c1.setObjectName("curstomer 1"); c2.setObjectName("curstomer 2");
p1.start(); p2.start();
c1.start(); c2.start();
return a.exec(); }
|
QSemaphore 基于信号线程锁: 信号量是特殊的线程锁,信号量允许N个线程同时访问临界资源,通过acquire()
获取到指定资源,release()
释放指定资源.
#include <QCoreApplication> #include <iostream> #include <QThread> #include <QSemaphore>
const int SIZE = 5; unsigned char g_buff[SIZE] = {0};
QSemaphore g_sem_free(SIZE); QSemaphore g_sem_used(0);
class Producer : public QThread { protected: void run() { while( true ) { int value = qrand() % 256;
g_sem_free.acquire();
for(int i=0; i<SIZE; i++) { if( !g_buff[i] ) { g_buff[i] = value; std::cout << objectName().toStdString() << " --> " << value << std::endl; break; } }
g_sem_used.release();
sleep(2); } } };
class Customer : public QThread { protected: void run() { while( true ) { g_sem_used.acquire();
for(int i=0; i<SIZE; i++) { if( g_buff[i] ) { int value = g_buff[i];
g_buff[i] = 0; std::cout << objectName().toStdString() << " --> " << value << std::endl; break; } }
g_sem_free.release();
sleep(1); } } };
int main(int argc, char *argv[]) { QCoreApplication a(argc, argv);
Producer p1; Customer c1;
p1.setObjectName("producer"); c1.setObjectName("curstomer");
p1.start(); c1.start();
return a.exec(); }
|