C/C++原生API实现线程池

ThreadPool 线程池同步事件: 线程池内的线程函数同样支持互斥锁,信号控制,内核事件控制,临界区控制.

#include <Windows.h>
#include <iostream>
#include <stdlib.h>

unsigned long g_count = 0;

// --------------------------------------------------------------
// 线程池同步-互斥量同步
void NTAPI TaskHandlerMutex(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
// 锁定资源
WaitForSingleObject(*(HANDLE *)Context, INFINITE);

for (int x = 0; x < 100; x++)
{
printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
g_count = g_count + 1;
}

// 解锁资源
ReleaseMutexWhenCallbackReturns(Instance, *(HANDLE*)Context);
}

void TestMutex()
{
// 创建互斥量
HANDLE hMutex = CreateMutex(NULL, FALSE, NULL);

PTP_WORK pool = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerMutex, &hMutex, NULL);

for (int i = 0; i < 1000; i++)
{
SubmitThreadpoolWork(pool);
}

WaitForThreadpoolWorkCallbacks(pool, FALSE);
CloseThreadpoolWork(pool);
CloseHandle(hMutex);

printf("相加后 ---> %d \n", g_count);
}

// --------------------------------------------------------------
// 线程池同步-事件内核对象
void NTAPI TaskHandlerKern(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
// 锁定资源
WaitForSingleObject(*(HANDLE *)Context, INFINITE);

for (int x = 0; x < 100; x++)
{
printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
g_count = g_count + 1;
}

// 解锁资源
SetEventWhenCallbackReturns(Instance, *(HANDLE*)Context);
}

void TestKern()
{
HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
SetEvent(hEvent);

PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerKern, &hEvent, NULL);

for (int i = 0; i < 1000; i++)
{
SubmitThreadpoolWork(pwk);
}

WaitForThreadpoolWorkCallbacks(pwk, FALSE);
CloseThreadpoolWork(pwk);

printf("相加后 ---> %d \n", g_count);
}

// --------------------------------------------------------------
// 线程池同步-信号量同步
void NTAPI TaskHandlerSemaphore(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
// 锁定资源
WaitForSingleObject(*(HANDLE *)Context, INFINITE);

for (int x = 0; x < 100; x++)
{
printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
g_count = g_count + 1;
}

// 解锁资源
ReleaseSemaphoreWhenCallbackReturns(Instance, *(HANDLE*)Context, 1);
}

void TestSemaphore()
{
// 创建信号量为100
HANDLE hSemaphore = CreateSemaphore(NULL, 0, 100, NULL);

ReleaseSemaphore(hSemaphore, 10, NULL);

PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerSemaphore, &hSemaphore, NULL);

for (int i = 0; i < 1000; i++)
{
SubmitThreadpoolWork(pwk);
}

WaitForThreadpoolWorkCallbacks(pwk, FALSE);
CloseThreadpoolWork(pwk);
CloseHandle(hSemaphore);

printf("相加后 ---> %d \n", g_count);
}

// --------------------------------------------------------------
// 线程池同步-临界区
void NTAPI TaskHandlerLeave(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
// 锁定资源
EnterCriticalSection((CRITICAL_SECTION*)Context);

for (int x = 0; x < 100; x++)
{
printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
g_count = g_count + 1;
}

// 解锁资源
LeaveCriticalSectionWhenCallbackReturns(Instance, (CRITICAL_SECTION*)Context);
}

void TestLeave()
{
CRITICAL_SECTION cs;
InitializeCriticalSection(&cs);

PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerLeave, &cs, NULL);

for (int i = 0; i < 1000; i++)
{
SubmitThreadpoolWork(pwk);
}

WaitForThreadpoolWorkCallbacks(pwk, FALSE);
DeleteCriticalSection(&cs);
CloseThreadpoolWork(pwk);

printf("相加后 ---> %d \n", g_count);
}

int main(int argc,char *argv)
{
//TestMutex();
//TestKern();
//TestSemaphore();
TestLeave();

system("pause");
return 0;
}

简单的IO读写:

#include <Windows.h>
#include <iostream>
#include <stdlib.h>

// 简单的异步文本读写
int ReadWriteIO()
{
char enContent[] = "hello lyshark";
char deContent[255] = { 0 };

// 异步写文件
HANDLE hFileWrite = CreateFile(L"d://test.txt", GENERIC_WRITE, 0, NULL, OPEN_ALWAYS, FILE_FLAG_SEQUENTIAL_SCAN, NULL);
if (INVALID_HANDLE_VALUE == hFileWrite)
{
return 0;
}

WriteFile(hFileWrite, enContent, strlen(enContent), NULL, NULL);
FlushFileBuffers(hFileWrite);

CancelSynchronousIo(hFileWrite);
CloseHandle(hFileWrite);

// 异步读文件

HANDLE hFileRead = CreateFile(L"d://test.txt", GENERIC_READ, 0, NULL, OPEN_ALWAYS, NULL, NULL);
if (INVALID_HANDLE_VALUE == hFileRead)
{
return 0;
}

ReadFile(hFileRead, deContent, 255, NULL, NULL);
CloseHandle(hFileRead);
std::cout << "读出内容: " << deContent << std::endl;
return 1;
}


// 通过IO获取文件大小
int GetFileSize()
{
HANDLE hFile = CreateFile(L"d://test.txt", 0, 0, NULL, OPEN_EXISTING, NULL, NULL);
if (INVALID_HANDLE_VALUE == hFile)
{
return 0;
}

ULARGE_INTEGER ulFileSize;
ulFileSize.LowPart = GetFileSize(hFile, &ulFileSize.HighPart);

LARGE_INTEGER lFileSize;
BOOL ret = GetFileSizeEx(hFile, &lFileSize);

std::cout << "文件大小A: " << ulFileSize.QuadPart << " bytes" << std::endl;
std::cout << "文件大小B: " << lFileSize.QuadPart << " bytes" << std::endl;
CloseHandle(hFile);

return 1;
}

// 通过IO设置文件指针和文件尾
int SetFilePointer()
{
char deContent[255] = { 0 };
DWORD readCount = 0;

HANDLE hFile = CreateFile(L"d://test.txt", GENERIC_WRITE, 0, NULL, OPEN_ALWAYS, NULL, NULL);
if (INVALID_HANDLE_VALUE == hFile)
{
return 0;
}

LARGE_INTEGER liMove;

// 设置移动位置
liMove.QuadPart = 2;
SetFilePointerEx(hFile, liMove, NULL, FILE_BEGIN);

// 移动到文件末尾
SetEndOfFile(hFile);

ReadFile(hFile, deContent, 255, &readCount, NULL);
std::cout << "移动指针后读取: " << deContent << " 读入长度: " << readCount << std::endl;

CloseHandle(hFile);

// 设置编码格式
_wsetlocale(LC_ALL, L"chs");
setlocale(LC_ALL, "chs");
wprintf(L"%s", deContent);
}

int main(int argc,char *argv)
{
// 读写IO
ReadWriteIO();

// 取文件长度
GetFileSize();

// 设置文件指针
SetFilePointer();

return 0;
}